3.2007 \(\int \frac{\sqrt{a+\frac{b}{x^3}}}{x^3} \, dx\)

Optimal. Leaf size=517 \[ -\frac{2 \sqrt{2} 3^{3/4} a^{4/3} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac{b^{2/3}}{x^2}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt{3}\right )}{7 b^{2/3} \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}+\frac{3 \sqrt [4]{3} \sqrt{2-\sqrt{3}} a^{4/3} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac{b^{2/3}}{x^2}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} E\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt{3}\right )}{7 b^{2/3} \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}-\frac{6 a \sqrt{a+\frac{b}{x^3}}}{7 b^{2/3} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}-\frac{2 \sqrt{a+\frac{b}{x^3}}}{7 x^2} \]

[Out]

(-6*a*Sqrt[a + b/x^3])/(7*b^(2/3)*((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)) - (2*Sqrt[a + b/x^3])/(7*x^2) + (3*3^(1
/4)*Sqrt[2 - Sqrt[3]]*a^(4/3)*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + S
qrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) +
b^(1/3)/x)], -7 - 4*Sqrt[3]])/(7*b^(2/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a
^(1/3) + b^(1/3)/x)^2]) - (2*Sqrt[2]*3^(3/4)*a^(4/3)*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1
/3)*b^(1/3))/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((
1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(7*b^(2/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/
3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])

________________________________________________________________________________________

Rubi [A]  time = 0.244606, antiderivative size = 517, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {335, 279, 303, 218, 1877} \[ -\frac{2 \sqrt{2} 3^{3/4} a^{4/3} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac{b^{2/3}}{x^2}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt{3}\right )}{7 b^{2/3} \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}+\frac{3 \sqrt [4]{3} \sqrt{2-\sqrt{3}} a^{4/3} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac{b^{2/3}}{x^2}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} E\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt{3}\right )}{7 b^{2/3} \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}-\frac{6 a \sqrt{a+\frac{b}{x^3}}}{7 b^{2/3} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}-\frac{2 \sqrt{a+\frac{b}{x^3}}}{7 x^2} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b/x^3]/x^3,x]

[Out]

(-6*a*Sqrt[a + b/x^3])/(7*b^(2/3)*((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)) - (2*Sqrt[a + b/x^3])/(7*x^2) + (3*3^(1
/4)*Sqrt[2 - Sqrt[3]]*a^(4/3)*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + S
qrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) +
b^(1/3)/x)], -7 - 4*Sqrt[3]])/(7*b^(2/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a
^(1/3) + b^(1/3)/x)^2]) - (2*Sqrt[2]*3^(3/4)*a^(4/3)*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1
/3)*b^(1/3))/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((
1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(7*b^(2/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/
3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 279

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
n*p + 1)), x] + Dist[(a*n*p)/(m + n*p + 1), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
 b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+\frac{b}{x^3}}}{x^3} \, dx &=-\operatorname{Subst}\left (\int x \sqrt{a+b x^3} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{2 \sqrt{a+\frac{b}{x^3}}}{7 x^2}-\frac{1}{7} (3 a) \operatorname{Subst}\left (\int \frac{x}{\sqrt{a+b x^3}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{2 \sqrt{a+\frac{b}{x^3}}}{7 x^2}-\frac{(3 a) \operatorname{Subst}\left (\int \frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\sqrt{a+b x^3}} \, dx,x,\frac{1}{x}\right )}{7 \sqrt [3]{b}}-\frac{\left (3 \sqrt{2 \left (2-\sqrt{3}\right )} a^{4/3}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^3}} \, dx,x,\frac{1}{x}\right )}{7 \sqrt [3]{b}}\\ &=-\frac{6 a \sqrt{a+\frac{b}{x^3}}}{7 b^{2/3} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}-\frac{2 \sqrt{a+\frac{b}{x^3}}}{7 x^2}+\frac{3 \sqrt [4]{3} \sqrt{2-\sqrt{3}} a^{4/3} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}+\frac{b^{2/3}}{x^2}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} E\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt{3}\right )}{7 b^{2/3} \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}-\frac{2 \sqrt{2} 3^{3/4} a^{4/3} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}+\frac{b^{2/3}}{x^2}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt{3}\right )}{7 b^{2/3} \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}\\ \end{align*}

Mathematica [C]  time = 0.0123433, size = 51, normalized size = 0.1 \[ -\frac{2 \sqrt{a+\frac{b}{x^3}} \, _2F_1\left (-\frac{7}{6},-\frac{1}{2};-\frac{1}{6};-\frac{a x^3}{b}\right )}{7 x^2 \sqrt{\frac{a x^3}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b/x^3]/x^3,x]

[Out]

(-2*Sqrt[a + b/x^3]*Hypergeometric2F1[-7/6, -1/2, -1/6, -((a*x^3)/b)])/(7*x^2*Sqrt[1 + (a*x^3)/b])

________________________________________________________________________________________

Maple [B]  time = 0.025, size = 3309, normalized size = 6.4 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x^3)^(1/2)/x^3,x)

[Out]

-2/21*((a*x^3+b)/x^3)^(1/2)/x^3*(-18*I*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(
-b*a^2)^(1/3)))^(1/2)*EllipticE((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)
*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^
(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*(-b*a^2)^(1/
3)*3^(1/2)*(x*(a*x^3+b))^(1/2)*x^6*a-4*I*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^
2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*(a*x^4+b*x)^(1/2)*3^(1/2)*(x*(a*x^3+b))^(1/2)
*x^3*a-36*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*Ellipti
cF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))
/(I*3^(1/2)-3))^(1/2))*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1
/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*(-b*a^2)^(1/3)*(x*(a*x^3+b))^(1/2)*x^6*a+
54*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticE((-(I
*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(
1/2)-3))^(1/2))*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a
*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*(-b*a^2)^(1/3)*(x*(a*x^3+b))^(1/2)*x^6*a+18*I*((
I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticE((-(I*3^(1
/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-
3))^(1/2))*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-
b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*3^(1/2)*(x*(a*x^3+b))^(1/2)*x^4*a*b+72*((I*3^(1/2)*(-
b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(
-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(
-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3)
)/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*(-b*a^2)^(2/3)*(x*(a*x^3+b))^(1/2)*x^5-108*((I*3^(1/2)*(-b*a^2)^(
1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticE((-(I*3^(1/2)-3)*x*a/(-1+I*3^(
1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-(I*3^(1
/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3
^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*(-b*a^2)^(2/3)*(x*(a*x^3+b))^(1/2)*x^5-18*I*3^(1/2)*(x*(a*x^3+b))^(1/2)*x
^7*a^2+13*I*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)
^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*3^(1/2)*x^7*a^2+36*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*
3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2
),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(
-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1
/2)*(x*(a*x^3+b))^(1/2)*x^4*a*b-54*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a
^2)^(1/3)))^(1/2)*EllipticE((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1
+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2
)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*(x*(a*x^3+b))^(1
/2)*x^4*a*b+3*I*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*
a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*(a*x^4+b*x)^(1/2)*3^(1/2)*(x*(a*x^3+b))^(1/2)*b-39*(1/a^2*x*(-a*x+(-b*
a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(
1/2)*x^7*a^2+36*I*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)
*EllipticE((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*
3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b
*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*(-b*a^2)^(2/3)*3^(1/2)*(x*(a*x^3+
b))^(1/2)*x^5+54*(x*(a*x^3+b))^(1/2)*x^7*a^2-18*I*(-b*a^2)^(1/3)*3^(1/2)*(x*(a*x^3+b))^(1/2)*x^6*a+13*I*(1/a^2
*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a
^2)^(1/3)))^(1/2)*3^(1/2)*x^4*a*b+54*(-b*a^2)^(1/3)*(x*(a*x^3+b))^(1/2)*x^6*a+54*(-b*a^2)^(2/3)*(x*(a*x^3+b))^
(1/2)*x^5+12*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2
)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*(a*x^4+b*x)^(1/2)*(x*(a*x^3+b))^(1/2)*x^3*a-39*(1/a^2*x*(-a*x+(-b*a^2)^(1
/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*x^
4*a*b-18*I*(-b*a^2)^(2/3)*3^(1/2)*(x*(a*x^3+b))^(1/2)*x^5-9*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)
^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*(a*x^4+b*x)^(1/2)*(x*(a*x^
3+b))^(1/2)*b)/(a*x^3+b)/b/(I*3^(1/2)-3)/(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^
2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + \frac{b}{x^{3}}}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^3)^(1/2)/x^3,x, algorithm="maxima")

[Out]

integrate(sqrt(a + b/x^3)/x^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{\frac{a x^{3} + b}{x^{3}}}}{x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^3)^(1/2)/x^3,x, algorithm="fricas")

[Out]

integral(sqrt((a*x^3 + b)/x^3)/x^3, x)

________________________________________________________________________________________

Sympy [A]  time = 0.992452, size = 41, normalized size = 0.08 \begin{align*} - \frac{\sqrt{a} \Gamma \left (\frac{2}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{2}{3} \\ \frac{5}{3} \end{matrix}\middle |{\frac{b e^{i \pi }}{a x^{3}}} \right )}}{3 x^{2} \Gamma \left (\frac{5}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x**3)**(1/2)/x**3,x)

[Out]

-sqrt(a)*gamma(2/3)*hyper((-1/2, 2/3), (5/3,), b*exp_polar(I*pi)/(a*x**3))/(3*x**2*gamma(5/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + \frac{b}{x^{3}}}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^3)^(1/2)/x^3,x, algorithm="giac")

[Out]

integrate(sqrt(a + b/x^3)/x^3, x)